3.15.52 \(\int \frac {1}{\sqrt {a-b x} \sqrt {c+d x}} \, dx\)

Optimal. Leaf size=43 \[ -\frac {2 \tan ^{-1}\left (\frac {\sqrt {d} \sqrt {a-b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} \sqrt {d}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {63, 217, 203} \begin {gather*} -\frac {2 \tan ^{-1}\left (\frac {\sqrt {d} \sqrt {a-b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a - b*x]*Sqrt[c + d*x]),x]

[Out]

(-2*ArcTan[(Sqrt[d]*Sqrt[a - b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(Sqrt[b]*Sqrt[d])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a-b x} \sqrt {c+d x}} \, dx &=-\frac {2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {c+\frac {a d}{b}-\frac {d x^2}{b}}} \, dx,x,\sqrt {a-b x}\right )}{b}\\ &=-\frac {2 \operatorname {Subst}\left (\int \frac {1}{1+\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a-b x}}{\sqrt {c+d x}}\right )}{b}\\ &=-\frac {2 \tan ^{-1}\left (\frac {\sqrt {d} \sqrt {a-b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.08, size = 103, normalized size = 2.40 \begin {gather*} \frac {2 \sqrt {-b} \sqrt {-a d-b c} \sqrt {\frac {b (c+d x)}{a d+b c}} \sin ^{-1}\left (\frac {\sqrt {-b} \sqrt {d} \sqrt {a-b x}}{\sqrt {b} \sqrt {-a d-b c}}\right )}{b^{3/2} \sqrt {d} \sqrt {c+d x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a - b*x]*Sqrt[c + d*x]),x]

[Out]

(2*Sqrt[-b]*Sqrt[-(b*c) - a*d]*Sqrt[(b*(c + d*x))/(b*c + a*d)]*ArcSin[(Sqrt[-b]*Sqrt[d]*Sqrt[a - b*x])/(Sqrt[b
]*Sqrt[-(b*c) - a*d])])/(b^(3/2)*Sqrt[d]*Sqrt[c + d*x])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.09, size = 43, normalized size = 1.00 \begin {gather*} \frac {2 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a-b x}}\right )}{\sqrt {b} \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[a - b*x]*Sqrt[c + d*x]),x]

[Out]

(2*ArcTan[(Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[a - b*x])])/(Sqrt[b]*Sqrt[d])

________________________________________________________________________________________

fricas [B]  time = 0.73, size = 185, normalized size = 4.30 \begin {gather*} \left [-\frac {\sqrt {-b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} - 6 \, a b c d + a^{2} d^{2} - 4 \, {\left (2 \, b d x + b c - a d\right )} \sqrt {-b d} \sqrt {-b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d - a b d^{2}\right )} x\right )}{2 \, b d}, -\frac {\sqrt {b d} \arctan \left (\frac {{\left (2 \, b d x + b c - a d\right )} \sqrt {b d} \sqrt {-b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} - a b c d + {\left (b^{2} c d - a b d^{2}\right )} x\right )}}\right )}{b d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*sqrt(-b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 - 6*a*b*c*d + a^2*d^2 - 4*(2*b*d*x + b*c - a*d)*sqrt(-b*d)*sqrt(-
b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d - a*b*d^2)*x)/(b*d), -sqrt(b*d)*arctan(1/2*(2*b*d*x + b*c - a*d)*sqrt(b*d)
*sqrt(-b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 - a*b*c*d + (b^2*c*d - a*b*d^2)*x))/(b*d)]

________________________________________________________________________________________

giac [A]  time = 1.16, size = 54, normalized size = 1.26 \begin {gather*} \frac {2 \, b \log \left ({\left | -\sqrt {-b d} \sqrt {-b x + a} + \sqrt {b^{2} c + {\left (b x - a\right )} b d + a b d} \right |}\right )}{\sqrt {-b d} {\left | b \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

2*b*log(abs(-sqrt(-b*d)*sqrt(-b*x + a) + sqrt(b^2*c + (b*x - a)*b*d + a*b*d)))/(sqrt(-b*d)*abs(b))

________________________________________________________________________________________

maple [B]  time = 0.01, size = 84, normalized size = 1.95 \begin {gather*} \frac {\sqrt {\left (-b x +a \right ) \left (d x +c \right )}\, \arctan \left (\frac {\sqrt {b d}\, \left (x -\frac {a d -b c}{2 b d}\right )}{\sqrt {-b d \,x^{2}+a c +\left (a d -b c \right ) x}}\right )}{\sqrt {-b x +a}\, \sqrt {d x +c}\, \sqrt {b d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-b*x+a)^(1/2)/(d*x+c)^(1/2),x)

[Out]

((-b*x+a)*(d*x+c))^(1/2)/(-b*x+a)^(1/2)/(d*x+c)^(1/2)/(b*d)^(1/2)*arctan((b*d)^(1/2)*(x-1/2*(a*d-b*c)/b/d)/(-b
*d*x^2+(a*d-b*c)*x+a*c)^(1/2))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 0.34, size = 44, normalized size = 1.02 \begin {gather*} -\frac {4\,\mathrm {atan}\left (\frac {d\,\left (\sqrt {a-b\,x}-\sqrt {a}\right )}{\sqrt {b\,d}\,\left (\sqrt {c+d\,x}-\sqrt {c}\right )}\right )}{\sqrt {b\,d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a - b*x)^(1/2)*(c + d*x)^(1/2)),x)

[Out]

-(4*atan((d*((a - b*x)^(1/2) - a^(1/2)))/((b*d)^(1/2)*((c + d*x)^(1/2) - c^(1/2)))))/(b*d)^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a - b x} \sqrt {c + d x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x+a)**(1/2)/(d*x+c)**(1/2),x)

[Out]

Integral(1/(sqrt(a - b*x)*sqrt(c + d*x)), x)

________________________________________________________________________________________